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Abstract. In the framework of various exact and approximate methods, the properties of the
quasi-exactly solvable double-Morse potential are discussed. The relation between the hidden
algebraic structure of the model and its geometrical properties is examined. The potential is
used as a testing model for a semiclassical approximation which proves to work well both in the
symmetric and asymmetric cases. The relation between semiclassical energy-level splitting and
perturbation theory is underlined, leading to conclusions on the interpretation of the semiclassical
results.

1. Introduction

Recently several new types ofquasi-exactly solvable (QES)one-dimensional double-well
potentials have been proposed [1–7]. Their most important property is that the Schrödinger
equation for a particle moving in these potentials can be solved exactly for certain values
of the potential parameters. It is well known that the so-calledφ4 potential

V4(x) = −A
2
x2+ B

4
x4 (1)

whereA andB are positive constants, commonly used in various branches of physics, does
not have this property.

Razavy [1] suggested that the bistable potential

VR(x) = h̄
2β2

2m
[ 1

8ξ
2 cosh 4βx − (n+ 1)ξ cosh 2βx − 1

8ξ
2] (2)

might be used in many applications. Ifn is a natural number then then lowest energy
levels for this potential may be found.

Matsushita and Matsubara [2] and Lawrence and Robertson [3, 4] proposed a description
of a proton in a hydrogen bond with the potential

VL(x) = V0[ 1
2A

2 cosh 2ax − 2A coshax].

This potential may be obtained as a sum of two Morse potentials, oriented in opposite
directions (back-to-back) and centred at different points. Various estimations (see e.g. [3, 8])
show that this potential is suitable for the description of a hydrogen bond.

A similar potential

VZ(x) = h̄
2a2

2m
[ 1

4B
2 sinh2 ax − B(S + 1

2) coshax] (3)
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was derived by Zaslavsky and Ulyanov [5, 6] and used, in the latter work, for the description
of a spin system—a uniaxial ferromagnet.

It is evident that all these potentials are equivalent to the symmetric double-Morse
potential [7],

VdM(x) = V0(A coshax − 1)2. (4)

The most comprehensive discussion of the properties of the double-Morse potential was
given by Zaslavsky and Ulyanov [6] by using coherent states representation. Special
attention was paid to the question of quantum tunnelling considered in terms of the WKB
approximation.

Considerable progress in better understanding and a more systematic description of QES
models has been made within the last few years due to work by Turbiner [9], González-
Lópezet al [10], Deenen [11], Ushveridze [12] and others. The interplay between spin and
coordinate representations has turned out especially fruitful (see also [13]). In that context
the discussion on the properties of the double-Morse potential seems to be worth extending,
in particular involving its asymmetric generalization, which also preserves the property of
quasi-exact solvability.

Introducing notation that will be useful in what follows, the potential may be written in
the form

V (x) = h̄
2a2

2m

[
1

4
(2S + 1)2

(
B

2S + 1
coshax − 1

)2

+ 1

2
BC sinhax

]
= h̄

2a2

2m
U(ξ) (5)

whereξ = ax. One finds that for integer and half-integer values ofS, S = 0, 1
2, 1, . . . , the

first 2S + 1 lowest energy levels and corresponding eigenfunctions may be found.
The purpose of this paper is to present a discussion of the following problems.
The first one is associated with the virtually untouched question of the relation between

apparent (i.e. geometrical) and hidden (i.e. dynamical) symmetries. We develop here
a method proposed previously [13], where the underlying dynamical sl(2) symmetry is
involved in an effective way. We show how the whole family of one-dimensional QES
models may be generated. The proposed construction explains what is the place of the
double-Morse potential and in what sense the member of the family which is the closest
to the double-well potential (5) is a periodic potential, with the resulting close relationship
between exact eigenvalues and eigenfunctions of these two problems.

We underline the relation between coordinate and spin representations of the sl(2)
algebra that allows for a deeper insight revealing interesting spectral properties and their
interpretation.

The second problem relates to the semiclassical approximation. The shape of the
potential barrier in the model (5) is very flat compared with that of theφ4 model (1) (see
figure 1); this suggests that the range of applicability of the semiclassical approximation
may be much wider here than in the model (1). This can be seen in the considerations of
Ulyanov and Zaslavsky [6] which were, however, limited to the symmetric case. We will
extend the discussion to the asymmetric potential.

There exists a considerable list of references where the split of energy levels in
symmetric double-well potentials due to tunnelling is discussed [14] (see also references
therein). On the other hand, accidental degeneration in the asymmetric potential should
lead to a ‘split’ as well. The double-Morse potential enables one to perform an appropriate
examination. Its unique feature is that it is composed of two Morse potentials, each of
them exactly solvable (bound states are known), the separation between them being a
free parameter. Therefore, in this model one may easily study how the levels, that are
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Figure 1. (a) The double-Morse potential has different shapes, depending on the value of
A = B/(2S + 1). (b)–(d) Comparison of the double-Morse potential forA = 10−2, A = 10−3

andA = 10−4, respectively, (full curve) with a fittedφ4 potential (broken curve). The potential
barrier for the double-Morse potential becomes very flat for smallA; the separation of wells
grows as− lnA.

degenerated for infinite separation, are split due to an increasing overlap of eigenstates
when the separation becomes finite. We exploit that opportunity finding rather startling
behaviour: both in symmetric and asymmetric cases degeneration of the energy levels,
accidental in the latter case, is lifted leading to the same split regarded as a perturbative
effect (in the small under-barrier penetration limit).

The paper is organized as follows. In section 2 we present the well known solution
of the Schr̈odinger equation by the ansatz method. We point out that the same method
may be applied to a related periodic potential. Hidden symmetry and the resulting relation
between the models (double-well potential, periodic potential and a wider class of models) is
presented in sections 3 and 4. Semiclassical approximation, thereal trajectories in complex
time (RTCT) method is briefly introduced and applied to the symmetric and asymmetric
double-Morse potential in sections 5 and 6. It is compared with the exact results and WKB
approximation, wherever it applies. Concluding remarks are given in section 7.

2. The ansatz method

In this section we summarize the method of using the appropriate ansatz for solving the
Schr̈odinger equation

H9 = E9
with the double-Morse potential (5). A similar method was first given by Razavy [1]. The
ansatz method is equivalent to a somewhat different approach involving the use of generating
functions which was presented in [6]. Below the solution for the symmetric limit (C = 0)
of the potential is presented but it may be easily generalized to the asymmetric case.
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The discussed equation has the form[
− d2

dξ2
+ U(ξ)− E

]
9(ξ) = 0 (6)

where

E = 2m

h̄2a2
E.

We are interested in square integrable solutions of equation (6). Making the ansatz

9(ξ) = 8(ξ) · exp[−ϕ(ξ)] ϕ(ξ) =
∫ ξ

g(y)dy

we obtain the following equation:

g′(ξ)− g2(ξ)− 8
′′(ξ)− 2g(ξ) ·8′(ξ)

8(ξ)
= E − U(ξ)

where the primes denote the derivatives with respect toξ . Note that this equation, for given
functions8(ξ) andU(ξ), is a Ricatti equation forg(ξ). Its solution can be found only in
particular cases.

For the ground state the wavefunction9(ξ) has no nodes in the finite interval,8(ξ) ≡ 1.
After some algebra one gets the ground state eigenfunction for lower values ofS, e.g.

90(ξ) = exp

[
−B

2
coshξ

]
for S = 0

and

90(ξ) = C0 cosh
ξ

2
exp

[
−B

2
coshξ

]
for S = 1

2.

The above results suggest a solution in the form

9(ξ) = 8(ξ) exp

[
−B

2
coshξ

]
. (7)

Then we get from (6)

8′′ − B sinhξ8′ + [ε + B · S coshξ ]8 = 0 (8)

where

ε = E − 1
4[(2S + 1)2+ B2]. (9)

We look for solutions of this equation having the form of a polynomial in sinhξ or coshξ .
It is convenient to assume that8(ξ) is a polynomial in exp[mξ ],

8(ξ) =
+m0∑

m=−m0

am exp(mξ). (10)

Inserting this expression into equation (8) one obtains∑
m

(ε +m2)amemξ + B
2

∑
m

(S −m)e(m+1)ξ + B
2

∑
m

(S +m)ame(m−1)ξ = 0

which leads to the following three-term difference equation for the coefficientsam:

(ε +m2)am + B
2

[(S + 1−m)am−1+ (S + 1+m)am+1] = 0. (11)
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Table 1. Height of the potential humpU0 = U(0), energy eigenvaluesE and the pre-exponential
part8 (up to a constant) of the corresponding wavefunctions (see (7)) for the symmetric double-
well potential. For the parameterεi see (9).

S U0 E 8

0 ( B2 − 1
2)

2 ( B2 )
2 + 1

4 1

1
2 ( B2 − 1)2 ( B2 )

2 − B
2 + 3

4 coshξ2
( B2 )

2 + B
2 + 3

4 sinh ξ2

1 ( B2 − 3
2)

2 ( B2 )
2 −

√
B2 + 1

4 + 7
4 (B − ε0 coshξ)

( B2 )
2 + 5

4 sinhξ

( B2 )
2 +

√
B2 + 1

4 + 7
4 (B − ε2 coshξ)

3
2 ( B2 − 2)2 ( B2 )

2 − B
2 −
√
B2 − B + 1+ 11

4 cosh3
2ξ − 2

B
(ε0 + 9

4) cosh1
2ξ

( B2 )
2 + B

2 −
√
B2 + B + 1+ 11

4 sinh 3
2ξ − 2

B
(ε1 + 9

4) sinh 1
2ξ

( B2 )
2 − B

2 +
√
B2 − B + 1+ 11

4 cosh3
2ξ − 2

B
(ε2 + 9

4) cosh1
2ξ

( B2 )
2 + B

2 +
√
B2 + B + 1+ 11

4 sinh 3
2ξ − 2

B
(ε3 + 9

4) sinh 1
2ξ

2 ( B2 − 5
2)

2 ( B2 )
2 −

√
B2 + 9

4 + 15
4 sinh 2ξ − 2

B
(4+ ε1) sinhξ

( B2 )
2 +

√
B2 + 9

4 + 15
2 sinh 2ξ − 2

B
(4+ ε3) sinhξ

To terminate the series at finitem0 it is sufficient to assume that

aS+1 = 0= a−S−1

with

m = −S,−S + 1,−S + 2, . . . , S − 2, S − 1, S.

For givenS the polynomial (10) contains 2S + 1 terms. The condition of solvability of the
system of homogeneous equations (11), i.e. the zeros of the determinant of this system of
equations, which is an algebraic equation of the order 2S + 1 with respect toε, allows us
to calculate 2S + 1 energy levels.

Table 1 contains the solutions of the Schrödinger equation (6) for particular values of
the parameterS = 0, 1

2, 1, 3
2, 2, along with the height of the potential hump.

For the first four cases the wavefunctions and corresponding energy levels can be easily
found in the analytical form. ForS = 2, the odd energy levels may be found from the
equation

ε3+ 5ε2+ 4(1− B2)ε − 12B2 = 0

which may be solved analytically e.g. using the computer symbolic calculation systems (in
[7] there are some mistakes in the formulae related to this case). The question of analytical
solution of the eigenvalue problem was recently investigated in [15]. It was noted that for
S = 5

2 the eigenvalue problem is reduced to finding roots of two third-order polynomials.
Once the roots are known, the eigenfunctions may be found.

A regular behaviour of the energy spectrum may be observed. Increasing the value of
the parameterB (B ∈ (0, 2S + 1)) causes ‘movement’ of the energy levels upwards: they
tend to leave the wells. Note (a property not obvious at first sight) that when only one level
is known exactly,S = 0, it lies above the barrier. When two or three levels are known,
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Figure 2. Various examples of the periodic potential
related to the double-Morse potential: (a) single-well
form (A < 1); (b) double-well form (A > 1) (equation
(12)); (c) asymmetric generalization analogous to (5).

S = 1
2 or S = 1, respectively, no more than two of them lie below the barrier; in the case

S = 3
2, all four of the levels might be below the potential hump. For sufficiently small

values ofB, out of the exactly known first 2S + 1 levels, 2[S + 1
2] are below the potential

hump ([x] is the integer part ofx). This regularity will become clear when the algebraic
approach is developed in section 3.

The method presented above may also be used to find a partial solution to another,
related problem. The formal substitutionx → iφ made in the Schrödinger equation with
the potential (4) provides us with a related QES model with periodic potential

Vper(φ) = −V0(A cosaφ + 1)2. (12)

It may describe a one-dimensional periodic lattice or (ifa is a natural number) a potential
in a rotational problem. Using an appropriate shiftφ → φ − φ0 we may consider only
positive values ofA.

This potential written in the form analogous to (2) was used by Razavy [16]. A similar
periodic potential, having the form related to (3) was proposed by Zaslavsky and Ulyanov
[5].

The potential (12) has different form depending on the value ofA, as shown in figure 2.
The Schr̈odinger equation for a molecule moving (or rotating) in the potential (12) reads

(in dimensionless units, cf (5))[
− d2

dξ2
+ Uper(ξ)− E

]
9(ξ) = 0

where ξ = aφ, (in a rotational problem the mass should be replaced by the moment of
inertia I ).
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Making the corresponding substitution in the ansatz (7),

9(ξ) = 8(ξ) exp

[
B

2
cosξ

]
one reproduces all the results found for the double-well potential.

The obtained solutions fulfil the condition

9(ξ + 2π) = (−1)2S9(ξ).

Therefore, in a rotational problem only the solutions withS being a natural number are
correct. On the other hand, interpreted as wavefunctions of a Bloch electron, the solutions
correspond to the top or the bottom of the band.

3. Hidden algebraic structure

One may expect that the quasi-exact solvability of the model (5) is a result of some kind
of algebraic structure or dynamical symmetry of the model. In this section we discuss this
structure as well as the relation between the hidden algebra of the model and its properties.

Zaslavsky and Ulyanov [6, 17] showed that by using an appropriate representation this
model may be transformed into an algebraic spin Hamiltonian. They discussed also other
models that possess this property. Energy eigenvalues of spin Hamiltonians were associated
with the (2S + 1) lowest levels of the original Hamiltonian.

The following questions arise: how are the properties of the coordinate Hamiltonian
related to the corresponding spin Hamiltonian and how wide is the class of similar QES
models? The answer to the second question is known. The QES Hamiltonians have a hidden
algebraic structure related to the sl(2) algebra. All such Hamiltonians may be classified.
Some of them yield physically meaningful potentials with corresponding normalizable
wavefunctions [10]. A comprehensive review of the subject is contained in [12].

Below, we present a simple, systematic way of deriving coordinate Hamiltonians from
the spin ones. This approach allows us to identify QES Hamiltonians as divided into 31
classes. The analysis throws light to a deeper meaning of the relation between the models
(4) and (12). We discuss also the relation between the properties of the spectrum and the
algebraic structure of the Hamiltonian.

As was noticed by Ulyanov and Zaslavsky [6], both the double-well and the periodic
potentials correspond to the spin Hamiltonian

H = aS2
z − BSx + CSz (13)

where the case ofC = 0 corresponds to symmetric forms of the potentials. The relation
between the mechanical problems and the spin Hamiltonians was discussed using the
generating function formalism or the coherent states representation. However, since all
of the discussed models belong to the sl(2) algebra, the properties of that algebra may be
used in a more direct way in order to construct coordinate realizations of spin operators (an
alternative construction was proposed by Deenen [11]). Let us consider a realization of the
sl(2) algebra in terms of generalized Lie derivatives

S3 = v(ξ) d

dξ
+ u(ξ)

S+ = v+(ξ) d

dξ
+ u+(ξ)

S− = v−(ξ) d

dξ
+ u−(ξ)

(14)
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(throughout this section we use the dimensionless notation introduced in the equation (5)).
The generators must satisfy the usual commutation relations

[S3, S+] = S+ [S3, S−] = −S− [S+, S−] = 2S3.

The differential equations resulting from these relations determine the functionsu±, v± in
terms ofu, v. One finds that only one parameterS is left free:

v±(ξ) = ±v(ξ)e±F(ξ) u±(ξ) = (±u(ξ)− S)e±F(ξ) (15)

where

F(ξ) =
∫

dξ

v(ξ)
.

Any choice ofu, v, S defines one realization of sl(2).
Now, consider the general class of Hamiltonians

H =
∑

aijSiSj +
∑

biSi i, j = +,−, 3. (16)

Suppose that a specific set of parametersaij , bi is selected. Then the requirement that the
operator resulting from insertion of (14) into (16) should have a usual Schrödinger form
determines the two functionsu, v. Thus, the obtained mechanical (coordinate) Hamiltonian,
as well as the associated realization (14) is in fact uniquely determined by the set of
parameters. In practice one finds that the parametersaij are responsible for the general form
of the potential (i.e. for the class to which it belongs: polynomial, hyperbolic functions,
trigonometric, Jacobi elliptic functions etc), whereas the choice ofbi allows some freedom
within the class. Taking into account commutation relations and constant Casimir operator
for the realization (14), one obtains 31 non-equivalent combinations of coefficientsaij
corresponding to 31 classes of potentials, although not all of them are physically interesting.

The Casimir operator for the realization (14, 15) is a multiple of the unit operator,

C = S−S+ + S2
3 + S3 = S(S + 1) · I

therefore such a realization of the sl(2) algebra has got one invariant subspace of dimension
2S + 1 if and only if 2S is a non-negative integer. This subspace is obviously invariant
underH and therefore the diagonalization of the original Hamiltonian is partly reduced to
a matrix problem and the corresponding(2S + 1) eigenvalues may be found. The known
eigenvalues correspond to the lowest energy levels of the coordinate Hamiltonian.

4. Algebraic structure and spectral properties of the double-Morse potential

The class of double-Morse and periodic potentials discussed in this paper corresponds to
all aij coefficients equal to zero except fora33 = a (cf (13)) [13]. Fora > 0 the above
procedure leads to a family of periodic potentials containing (12). Whena < 0 (it may be
assumed without loss of generality thata = −1) one gets the Hamiltonian with a potential
which may be written in the following form as a sum of two Morse potentials

U(ξ) = U+[e2(ξ−ξ+) − 2e(ξ−ξ+)] + U−[e−2(ξ+ξ−) − 2e−(ξ+ξ−)] + 1
4b

2
3 −

b+b−
2

(17)

where

U± = 1
4(2S + 1∓ b3)

2 ξ± = ln
2S + 1∓ b3

b±
. (18)

It is straightforward to verify that the above potential is equal (up to a constant) to (5) when

b− = b+ = B/2 b3 = C.
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As we discuss below, choosingb− 6= b+ yields no essential generalization.
We find that the geometrical property of the double-Morse potential, its decomposition

into a sum of two Morse potentials, is directly reflected by the hidden algebraic structure
of the model. The parametersS and b3 define the amplitudes,U+ andU−, of the two
components of the double-well potential; forb3 = 0 the two Morse potentals have equal
amplitudes and the resulting double-well potential is symmetric. The Morse wells are
separated by the distanced = ξ+ + ξ− which, for given amplitudes, depends only upon the
productp = b+b−. For a given value ofp, changes in the ratior = b−/b+ correspond
only to translating the whole potential along theX axis. The infinite separation corresponds
to p → 0. This may be achieved by decreasing one of the parametersb+, b− while the
other one is kept constant. It corresponds to moving one of the Morse potentials to infinity.
Alternatively, it is possible to translate both the components of the potential by keeping
r = 1. Therefore the geometry of the potential is directly governed by the parameters of
its spin counterpart:p = b+b− related to the separation of the wells andb3 responsible for
asymmetry.

From the formulae (17), (18) it is clear that the condition of quasi-exact solvability
may be satisfied no matter how far the component potentials are separated, provided that
the amplitudes are appropriately selected (2S a non-negative integer). In other words, the
family of QES potentials for a given value ofS consists of potentials obtained as a sum of
two Morse potentials with fixed amplitudes (parametersS andb3). The family of potentials
is parametrized by the separation of the wellsd ∼ − ln(b+b−).

Partial algebrization of the problem makes it possible to find several energy levels for
small values ofS. The results for the symmetric potential are the same as those in table 1
up to the shift by

− B
2

4
− (S + 1

2)
2 (19)

whereB = 4b+b−. For the asymmetric potential one gets the levels

S = 0 : E0 =
(
B

2

)2

−
(
C

2

)2

+ 1

4

S = 1
2 : E0 =

(
B

2

)2

−
(
C

2

)2

− 1

2

√
B2+ C2+ 3

4

E1 =
(
B

2

)2

−
(
C

2

)2

+ 1

2

√
B2+ C2+ 3

4
.

The above energy levels correspond to the potential (5) and are obtained by the shift (19)
from the algebraic ones corresponding to (17).

The relation with the spin Hamiltonian allows us to draw some conclusions concerning
the spectrum of energy levels. In the limit of infinite separation of the wells,d →∞ (i.e.
b+b− → 0), the spectrum is formed by the energy levels of the two Morse potentials. In the
symmetric case (b3 = 0) all these levels are degenerate, except the highest one for integer
values ofS. The degeneracy is lifted for finited, resulting in energy levels grouped in
pairs. Note that forS integer, the largest diagonal element of the matrix Hamiltonian (13)
is equal to 0. Hence, at least one of the exactly known levels must be non-negative. On the
other hand, the top of the potential hump lies below 0. Thus we are sure that we know all
the under-barrier levels and at least one over-barrier one. At most 2S levels may lie below
the barrier. This statement does not hold for asymmetric potentials. The following question
remains open: does the spin Hamiltonian spectrum correspond to all under-barrier states in
a general case (asymmetric potential,S half-integer) or only to part of them?
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Figure 3. (a) Energy levels in two Morse wells with amplitudes corresponding to an integer
value ofC are degenerated. (b) The degeneracy is lifted when the distance between the wells is
decreased. The splitting of energy levels for lower levels is too small to be visible in the graph.

As a final element of our discussion on the algebraic structure of the double-Morse
potential, let us mention the possibility of using the usual perturbation theory as an
alternative to semiclassical approximations applied in the mechanical picture.

Let us fix b+ = b− = B/2. According to the formulae (18), the separation of the
single Morse wells depends (logarithmically) onB and is infinite whenB → 0. On the
other hand, considering (13) as a matrix Hamiltonian in a standard basis [18] we see that
it becomes diagonal forB = 0. Hence, the operatorBSx may be treated as a perturbation.
Moreover, it has a special band-diagonal structure with non-zero elements only just above
and just below the diagonal.

In the coordinate picture the diagonal Hamiltonian corresponds to a potential with an
infinite separation of wells. Its spectrum consists of two interwoven series

{−(S + b3/2− n)2}[S+b3/2]
n=0 {−(S − b3/2− n)2}[S−b3/2− 1

2]

n=0 . (20)

Whenb3 is integer the two series overlap resulting in degeneracy of several energy levels
(note that this ‘accidental degeneracy’ always affects a whole series of levels, cf figure 3(a)).
One expects that this degeneracy should be lifted when the wells are at a finite distance
(figure 3(b)). Indeed, systematic use of the perturbation theory results in splitting of the
levels at a certain order of perturbation. If the highest level is degenerated (S+b3/2 is half-
integer) then the splitting for this level is proportional toB. The kth level (counting from
the highest one) is split in the order 2k− 1 and the splitting correction1Ek is proportional
to B2k−1. If the highest level is not degenerated (S + b3/2 is integer) then one finds that
1Ek ∼ B2k, where the levels are counted downwards and the highest degenerated one
corresponds tok = 1.

In the non-degenerate case the first non-zero correction appears at the second order and
is proportional toB2.

The perturbative analysis performed on the matrix Hamiltonian is insensible to the
location of the energy level under or above the barrier. Within this approach two energy
levels may be considered a pair with degeneration lifted by perturbation even though they
have already moved over the barrier (an example is shown in figure 3). Moreover, it usually
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Figure 4. Dependence onB of the energy split between the two highest exactly known levels
1ε = ε2S+1 − ε2S (——) compared with the first-order perturbative result (– – –) and the top
of the potential barrier with respect to the position of the lower level of the pair,Ũ0 = U0− ε2S

(— · —) for two classes of potentials: (a) S = 4, C = 1 and (b) S = 10,C = 1.

turns out that the first-order perturbation splitting (proportional toB for the degenerated
upper level) is very close to the exact one until thelower of the two levels leaves the wells,
i.e. the first-order perturbation theory is valid even when one of the levels is over the barrier
(figure 4).

We would like to stress that the above discussion of energy-levels splitting—traditionally
belonging to the range of applications of semiclassical methods—was based on a perturbative
analysis. In the following section we show that semiclassical approximation yields the same
results.

5. WKB and RTCT methods

Ulyanov and Zaslavsky [6] widely discussed a semiclassical approximation for the QES
model (4). The connection between the mechanical (coordinate) system (6) and its spin
counterpart (13) may be exploited in a two-fold way.

While for small values of spinS exact solution of spin Hamiltonian provides analytical
formula for 2S + 1 lowest eigenvalues and eigenfunctions, in the case of largeS quantum
behaviour of the spin system (cf the discussion of spin tunnelling in [6]) may be studied
via semiclassical approximation in the corresponding mechanical system.

On the other hand, various semiclassical approximations might be verified in this case
since for small values ofS analytical formulae are known. The behaviour of the energy
levels in the vicinity of the potential hump is of particular interest.

Ulyanov and Zaslavsky investigated WKB and its modifications reporting coincidence
between the exact and approximate results [6, section 4]. Their analysis was limited,
however, to the symmetric double-well potential. In this section we shall discuss the
modified version of the WKB approximation obtained in the framework of path integral
formalism, the so-called RTCT method [19], which allows for exhaustive discussion,
including the general case of the asymmetric potential.

In the quantum mechanical problem with HamiltonianH , energy levels might be
determined as the poles of the Laplace transform of the propagator

K(x2, x1; T ) = 〈x2|e− i
h̄
HT |x1〉.

The semiclassical approximation leads to the simple formulae of summation over closed
orbits (see figure 5) of constant energy [19].
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Figure 5. Limits of integration (turning
points) for calculating action integrals used
in the WKB approximation.E0 is the energy
level at whichW0 is calculated (appendix).

Symmetric double-well potentials have been extensively discussed and the standard
WKB formula defining energy levels reads

(1+ a2)2+ b2 = 0 (21)

wherea = a1 = a2 due to symmetry andai relate to the classically allowed regions

ai = exp

(
− i

h̄
Wi

)
= exp

(
− i

h̄

∫ Ai

Bi−1

√
2m(E − V (x)) dx

)
whereasb is related to the classically forbidden region

b = exp

(
−1

h̄
W ′
)
= exp

(
−1

h̄

∫ B1

A1

√
2m(V (x)− E) dx

)
.

Energy eigenvalues are found from (21) by means of the perturbation expansion,

En = E0
n ±1En (22)

with b regarded as a small parameter:

1+ a2 = 0⇒ W(E0
n) = (n+ 1

2)πh̄

(1+ a2)2 = −b2⇒ 1En = h̄
2
ωn exp

(
−1

h̄
W ′
)

(23)

where

ωn =
(
∂W

∂E

)−1

E0
n

.

Modifications of various types used to improve the estimation of the energy-levels split,
21En, were outlined by Ulyanov and Zaslavsky [6], and comparison with the exact result
of the mechanical analogue was made. In this way the behaviour of the corresponding spin
model was investigated.

Special modifications are necessary in particular while calculating energy levels lying
just below the top of the potential barrier where the WKB approximation yields not only
quantitatively inaccurate but even qualitatively wrong results.

Moreover, as has been extensively discussed [19], the standard WKB approximation
suffers from serious inconsistency: energy levels are not well defined as they are complex-
valued and only expansion up to the first order yields the real numbers. Another
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disadvantage of this approximation is that it might be applied to the symmetric double-
well potential, but not to the asymmetric one. In fact, in this latter instance, the WKB
formula for energy levels,

(1+ a2
1)(1+ a2

2)+ b2 = 0

does not provide a reasonable approximation as even first order expansion yields complex
numbers. It was also pointed out there that the RTCT method makes remarkable progress in
removing the above-mentioned problems. Its predictions seem to work both in symmetric
and asymmetric potential as well, providing well defined, real-valued energy eigenvalues.
Moreover, the RTCT method has the advantage of accounting also for energy levels close
to the top of the potential hump within a single calculation scheme. No additional methods
are necessary to obtain these levels.

In the case of general double-well potential, poles of the Green’s function are defined
(see [19]):

(1+ a2
1)(1+ a2

2)+ 1
4b

2(1− a2
1)(1− a2

2) = 0.

Now in generala1 6= a2, leading to the following formula:

cot

[
1

h̄
W1(E)

]
cot

[
1

h̄
W2(E)

]
= 1

4
b4.

In the symmetric case the above equations take the form

(1+ a2)2+ 1
4b

2(1− a2)2 = 0

and

cot2
[

1

h̄
W(E)

]
= 1

4
exp

(
−1

h̄
W ′(E)

)
respectively. Resulting energy eigenvalues are obviously real-valued. WKB results are
reproduced in the symmetric potential for the deep levels, well below the potential hump,
b < 1. Below we examine the RTCT method in the double-Morse potential and these
predictions are compared with those of WKB in the symmetric case.

6. Semiclassical results for the double-Morse potential

6.1. Symmetric case

Table 2 contains energy levels for the symmetric potential (4) calculated using the standard
WKB method, the RTCT method and exact (numerical or algebraic) results for comparison.
For levels lying above the potential hump both semiclassical approximations yield the same
Bohr–Sommerfeld formula.

Unlike the WKB method, the RTCT approximation yields energy levels one by one, not
binding them into pairs. This becomes important when an odd number of levels lie below
the hump. The WKB results may then give an incorrect number of levels. An example
appears in the rows 4–6 of table 2, where four levels should be below the barrier. This is
reflected by the standard WKB calculation but then one gets another level (row 6) when
computing above the barrier. In principle it is not clear which one of the two levels should
be chosen. An opposite situation takes place in rows 13, 22 and 28 of table 2, where one
level gets lost.

In all these cases the RTCT method provides the correct number of levels without any
ambiguities, although in the case of row 5 one of the levels is incorrectly placed above the
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Table 2. Selected results for the symmetric double-Morse potential compared to exact energy
levels.

Number S A U0 Exact WKB RTCT

1 3
2 0.02 3.8416 ε0 1.749 10 1.749 29 1.749 28

2 ε1 1.749 29 1.749 47 1.749 47
3 1ε0,1 0.000 19 0.000 18 0.000 19
4 ε2 3.674 10 3.662 08 3.672 51
5 ε3 3.833 91 3.813 08 —
6 ε3 — 3.913 93
7 1ε2,3 0,159 81 0,151 00 0.241 42
8 ε4 4.506 02 4.477 74
9 ε5 5.290 73 5.265 29

10 3
2 0.04 3.6864 ε0 1.746 02 1.746 81 1.746 75

11 ε1 1.747 55 1.748 21 1.748 27
12 1ε0,1 0.001 53 0.001 40 0.001 52
13 ε2 3.606 78 — 3.597 15
14 ε3 3.925 25 3.956 25
15 1ε2,3 0.318 47 — 0.359 10

16 10 2
21 90.25 ε8 73.177 71 73.190 87 73.190 82

17 ε9 73.178 51 73.191 58 73.191 63
18 1ε8,9 0.000 80 0.000 71 0.000 81
19 ε10 83.354 81 83.397 46 83.393 13
20 ε11 83.444 71 83.479 88 83.486 29
21 1ε10,11 0.089 90 0.092 42 0.093 16
22 ε12 89.952 70 — 89.934 85
23 ε13 91.732 54 92.023 67
24 1ε12,13 1.779 84 — 2.088 82

25 10 12
21 20.25 ε0 8.009 86 8.114 47 8.109 36

26 ε1 8.115 57 8.204 99 8.211 87
27 1ε0,1 0.105 71 0.090 52 0.102 51
28 ε2 19.475 06 — 19.551 71
29 ε3 22.539 48 23.123 71
30 1ε2,3 3.064 42 — 3.572 00

barrier. Note, however, that the levelε3 causing these problems is very close to the top
of the barrier and the semiclassical methods cannot yield absolutely correct results in this
case.

When the energy-levels splitting is calculated for any levels except the highest one
in the wells, the accuracy of the RTCT method is usually better than that of the WKB
approximation. For example, in rows 1 and 2 we have 0.5% discrepancy for RTCT versus
7% for WKB. In rows 16–17 the errors are 1.3% and 10%, respectively. For the next pair
in the same series they are 4% (RTCT) and 8% (WKB). In the critical case when one of the
levels belonging to the WKB pair is above the hump, the RTCT method produces an error
up to 20%. This is worse than with the specialized formulae used in [6] but the advantage
here is of using one simple scheme for all levels.
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Table 3. Selected results for the asymmetric double-Morse potential compared to exact energy
levels. HereS = 10, A = 0.5, C = 1.4, the potential minima areU1 = −13.396 and
U2 = 12.057 92 and the maximum isU0 = 28.056 98.

Number Exact RTCT

1 ε0 −3.656 32 −3.619 599
2 ε1 13.556 89 13.633 41
3 ε2 19.419 16 19.545 75
4 ε3 26.536 53 26.769 10
5 ε4 31.187 23 31.144 48

6.2. Asymmetric case

The RTCT formula, unlike the standard WKB one may be used to generate semiclassical
approximation to the energy levels in asymmetric potentials. Table 3 shows an example of
energy levels obtained using this method.

The RTCT results are in good agreement with the exact ones, even for the levels closest
to the top of the barrier. The error does not exceed 5% of the distance between the levels.

A point that seems especially worthy of investigation is the ‘accidental degeneracy’ case,
where part of the levels of infinitely separated Morse wells (B → 0) coincide although the
wells are different. Such a situation corresponds to integer values ofC in (5) (see the
discussion at the end of the section 3). The exact degeneracy is reproduced by the zeroth-
order WKB (Bohr–Sommerfeld) approximation since for the Morse potential the WKB
method yields exact results.

In this case in the RTCT formulae one has for any energya2
1 = a2

2 (sinceW1 =
W2 + Ch̄π ) and ∂W1/∂E = ∂W2/∂E (for proof of these equalities see the appendix).
Hence, using the expansion (22) one has in the zeroth order

(1+ a2
1)(1+ a2

2) = 0⇒ Wi(E
(0)
n ) = (n+ 1/2)πh̄.

The solutions forW1 andW2 coincide and the levels are degenerated. In the first order

(1− a2
1)(1− a2

2) ≈ 4⇒ b2 = (1+ a2
1)(1+ a2

2)⇒ 1En = h̄
2
ωne
− 1
h̄
W ′(E(0)n )

where

ωn =
(
∂W1

∂E

)−1

E
(0)
n

=
(
∂W2

∂E

)−1

E
(0)
n

.

In this way we come back to the formula (23). There is no difference in the behaviour of
the energy levels between the symmetric case and asymmetric degenerated case.

In table 4 several results for an asymmetric potential (5) are shown.
The energy-levels splitting in this case is very close to the exact one for all levels except

the one or two just below the barrier. The error for the highest pair is about 15% even when
one of the two levels lies over the barrier (rows 12, 13). For lower levels the inaccuracy is
1–2%. Thus, the RTCT method gives qualitatively and usually even quantitatively correct
results in the asymmetric case when the standard WKB formulae cannot be used.
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Table 4. Selected results obtained by the RTCT method for the asymmetric double-Morse
potential with degeneracy of energy levels, compared to exact energy levels.

Number S A U0 Exact RTCT

1 10 0.1 89.3303 ε7 67.087 86 67.097 77
2 ε8 67.087 95 67.097 86
3 ε9 78.450 85 78.474 75
4 ε10 78.466 62 78.490 85
5 ε11 86.819 96 86.910 30
6 ε12 87.548 65 87.743 36
7 ε13 92.211 51 91.797 71
8 ε14 95.827 58 95.798 32

9 10 0.5 27.8136 ε0 0.000 00 0.041 65
10 ε1 16.446 73 16.544 65
11 ε2 16.587 93 16.585 01
12 ε3 27.393 65 27.395 51
13 ε4 30.595 07 31.086 19
14 ε5 38.076 86 37.834 22

6.3. Semiclassical approximation and energy-levels splitting for smallB

If B � 1 then the hump is very wide and is flat over most of its width. Therefore it may
be approximated by a rectangle and one can write

1

h̄
W ′ ≈

√
2m

h̄2a2
(EB − E(0)n ) ln

4(2S + 1)2− 4b2
3

B2

whereEB is the top of the potential barrier. On the other hand, in the limitB → 0 one can
use the known formulae for energy levels in the Morse potential

E(0)n = EB − 2m

h̄2a2

(
S + b3

2
− n

)2

n = 0, . . . ,

[
S + b3

2

]
(cf (20)). Hence,

1En ≈ h̄ωn

8(2S + 1)2− 8b2
3

B2(S+ b3
2 −n).

This relation generalizes the result of section 4 to non-QES (2S non-integer) cases.

7. Conclusions

The double-well Morse potential is obtained as a sum of two Morse potentials and in a
natural way is a promising candidate for the modelling of many physical systems. In this
paper we discussed the properties of this model by using various methods. The model is a
member of a group of one-dimensional QES models with dynamical sl(2) symmetry. We
proposed here a simple method of treatment of that algebra which enabled us to draw up a
general framework for the whole family of models divided into 31 classes and to indicate
the ‘closest’ neighbours of the model of interest.

Spectral properties were examined within exact and approximate approaches. Mutual
relationship between coordinate and spin representations led to a comprehensive analysis
and interpretation of particular features. This model possesses a unique feature: changing
the separation between the wells, therefore changing their overlap, does not alter its main
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property. The quasi-exact solvability of the model is retained. Thus the influence of
the growing interaction between the wells on the split of energy levels might be studied.
Some interesting observations can be made. Peculiar distribution of the exactly known
energy levels found in the symmetric potential results from original degeneration of levels
in infinitely spaced wells. Finite separation lifts degeneration: increasing overlap of the
wells leads to the increasing split of the corresponding levels in such a way that for the
kth level (below the hump) the split is proportional toB2k or B2k−1. This is the first-
order perturbative expansion obtained in spin representation; interpretation forB comes
from coordinate representation,| lnB| being proportional to the distance between the wells.
Rather surprisingly, asymmetric potential with accidental degeneration reveals the same
behaviour: the split for thekth level below the hump is proportional toB2k (B2k−1). The
gap between close but not degenerated levels varies withB as well but the first-order
perturbative term is always proportional toB2.

Another aspect of these considerations relates to the question of interpretation of the
split of energy levels—regarded, within semiclassical approximation, as a tunnelling effect.
Looking at a bound state which is degenerated for infinite separation of the wells one finds
that its splitting may be traced as separation is decreased and, therefore, the two levels may
be considered to constitute a pair (they have a ‘common origin’). Since no information
about the barrier is encoded in the spin representation, this picture is valid even for levels
lying above the barrier!

The double-Morse potential is a suitable model for verification of the semiclassical
approximations. We applied here an approach previously developed by one of us (AR),
the RTCT method, formulated in the framework of path integrals, where the proper way of
summation over the orbits was claimed to provide an essential improvement. Indeed, apart
from the qualitative advantage over standard WKB approximation (improper summation
over the closed orbits in the latter), quantitative predictions are found to be quite satisfactory.
The quantitative corrections to WKB results in the symmetric case, although not very
impressive in general, are quite substantial in ambigiuous situations: WKB may lead to
overcounting the levels or underestimation of their number, whereas RTCT is a uniform
scheme yielding correct answers. In the asymmetric case, where the standard method does
not apply, it proves to be a good approximation of the exact results, even close to the top
of the barrier.

Appendix

Consider an asymmetric double-Morse potential (5) and a certain energy, such that the
classical motion may take place in either of the wells. We will show that classical actions
calculated for both wells differ by a magnitudeCh̄π .

The period of oscillation of a classical particle in the left (T1) and right (T2) well is
given by

Ti(E) =
√
m

2

∫ Ai

Bi−1

dx√
E − V (x)

where it is convenient to use the potential in the form (17)

V (x) = h̄a
2

2m

[
B2

16
e2x − B

2

(
S + 1

2
− C

2

)
ex + B

2

16
e−2x − B

2

(
S + 1

2
+ C

2

)
e−x

]
.

(We shifted the energy scale as compared with the previous sections of the paper.) The
integration limits are the turning points for the left or right well (see figure 5). Upon
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substitution

t = tanh
ax

2
we get

T1(E) = m

h̄a2

∫ c

d

dt√
r(t)

T2(E) = m

h̄a2

∫ a

b

dt√
r(t)

wherer(t) is a certain polynomial of fourth order int having four real rootsa > b > c > d

r(t) = r0(t − a)(t − b)(t − c)(t − d).
Using the tables of elliptic integrals [20] one finds that

T1 = T2 = 2m

h̄a2

2√
r0
gK(k) g = 2√

(a − c)(b − d) k2 = (a − b)(c − d)
(a − c)(b − d)

andK(k) is the complete elliptic integral of the first kind with modulusk. Thus, the periods
of oscillations in both wells are equal and depend only on the zeros ofr(t) and therefore
indirectly on the potential parameters and energy.

Now notice that

Ti = 2π
dWi

dE

whereW1, W2 are actions for movement in the left and right well, respectively. Hence

dW1

dE
= dW2

dE

and

W1(E) = W2(E)+W0

whereW0 is a constant equal to the action corresponding to movement with energyE0

equal to the local minimum of the potential (see figure 5)

W0 =
∫ A′1

B ′0

√
2m(E0− V (x)) dx.

Now we use the substitutiont = eax which yields

W0 = h̄
∫ t2

t1

√
q(t)

t2
dt

where

q(t) = −B
2

16
t4+ B

2

(
S + 1

2
− C

2

)
t3+ E0t

2+ B
2

(
S + 1

2
+ C

2

)
t − B

2

16
.

Sinceq(t) must have one double root and two single roots, we may write

q(t) = B2

16
(t3− t)2(t2− t)(t − t1).

The integral forW0 is elementary and the result is

W0 = h̄B
4

[
a2c + a2d + 2acd

2a
√
cd

− 1

2
(2a + c + d)

]
π = Ch̄π

where we made use of the Viete formulae.
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